Respuesta :

[tex]\mathrm{H}=2 \frac{1}{6}[/tex] is correct value of expression [tex]3 \frac{5}{6}=1 \frac{2}{3}+\mathrm{H}[/tex]

Solution:

Given expression is [tex]3 \frac{5}{6}=1 \frac{2}{3}+\mathrm{H}[/tex]

We have to substitute [tex]2\frac{1}{6}[/tex] for H

We have to substitute the value into the given expression and determine whether the given value of "H" makes the sentence true

On substituting given value of H in equation (1) and solving Right Hand Side, we get,

[tex]1 \frac{2}{3}+2 \frac{1}{6}[/tex]

Now let us convert the mixed fractions,

[tex]1 \frac{2}{3}+2 \frac{1}{6}=\frac{3 \times 1+2}{3}+\frac{6 \times 2+1}{6}=\frac{5}{3}+\frac{13}{6}[/tex]

On solving we get,

[tex]\frac{5}{3}+\frac{13}{6}=\frac{10+13}{6}=\frac{23}{6}[/tex]

Thus we have solved R.H.S and got the value [tex]\frac{23}{6}[/tex]

Now let us solve L.H.S of expression,

[tex]3 \frac{5}{6}=\frac{6 \times 3+5}{6}=\frac{18+5}{6}=\frac{23}{6}[/tex]

Thus L.H.S and R.H.S are equal

Thus given "H" = [tex]2\frac{1}{6}[/tex] makes the expression true