Answer:
a).[tex]v_{2}=62.04\frac{m}{s}[/tex]
b).[tex]P_{2}=91.1kPa[/tex]
Explanation:
The outlet velocity is calculated from energy balance relation using the specific heat at constant pressure so
[tex]E_{in}=E_{out}[/tex]
[tex]m'*(h_{1}+\frac{v_{1}^2}{2})=m'*((h_{1}+\frac{v_{2}^2}{2})+Q'[/tex]
[tex]m'*(\frac{v_{1}^2-v_{2}^2}{2})=m'*Cp*T+Q'[/tex]
a).
[tex]v_{2}^2=v_{1}^2-2*Cp*T-\frac{2*Q'}{m'}[/tex]
[tex]v_{2}=\sqrt{v_{1}^2-2*Cp*T-\frac{2*Q'}{m'}}[/tex]
[tex]v_{2}=\sqrt{220^2-2*1.005x10^3*15-\frac{2*18x10^3}{2.5}}[/tex]
[tex]v_{2}=62.04\frac{m}{s}[/tex]
b).
[tex]P_{2}=\frac{m'*R*T_{2}}{A_{2}*v_{2}}[/tex]
[tex]P_{2}=\frac{2.5*287*315}{400x10^{-4}*62.04}[/tex]
[tex]P_{2}=91.1kPa[/tex]