Respuesta :
Answer: [tex]x^{2} - \sqrt{3}x + \frac{1}{2} = 0[/tex]
Step-by-step explanation:
The formula for finding quadratic equation whose roots are given is :
[tex]x^{2} - sum of roots(x) + product = 0[/tex]
[tex]sum = \frac{\sqrt{3}+1}{2} +\frac{\sqrt{3}-1}{2}[/tex]
[tex]= \frac{\sqrt{3}+1+\sqrt{3}-1}{2}[/tex]
[tex]= \frac{2\sqrt{3}}{2}[/tex]
[tex]= \sqrt{3}[/tex]
[tex]product = \frac{\sqrt{3}+1}{2}[/tex] x [tex]\frac{\sqrt{3}-1}{2}[/tex]
[tex]= \frac{2}{4}[/tex]
[tex]= \frac{1}{2}[/tex]
substituting into the formula, we have:
[tex]x^{2} - \sqrt{3}x + \frac{1}{2} = 0[/tex]
Answer:
The required quadratic equation is
[tex]x^2-\sqrt{3} x+0.5 = 0[/tex]
Step-by-step explanation:
We know that the quadratic equation in terms of sum of roots and product of roots is given by,
[tex]x^2-(\alpha +\beta )x+(\alpha \beta )=0[/tex] ------- (1)
Given :
[tex]\alpha = \dfrac{\sqrt{3}+1 }{2}[/tex]
[tex]\beta = \dfrac{\sqrt{3} -1}{2}[/tex]
Calculation :
sum of roots -
[tex]\alpha +\beta =(\dfrac{\sqrt{3}+1 }{2})+(\dfrac{\sqrt{3}-1 }{2}) = \sqrt{3}[/tex] ------ (2)
product of roots -
[tex]\alpha \beta =(\dfrac{\sqrt{3} +1}{2})(\dfrac{\sqrt{3}-1 }{2}) = \dfrac{1}{2}=0.5[/tex] ------ (3)
from equation (1), (2) and (3) we get our required quadratic equation, which is
[tex]x^2-\sqrt{3} x+0.5 = 0[/tex]
For more information, refer the link given below
https://brainly.com/question/1162060?referrer=searchResults