Respuesta :
Answer:
(1) 4.2 × 10⁻⁴ mol·L⁻¹; (2) 4.3 × 10⁻⁴ mol·L⁻¹; (3) The results agree.
Explanation:
1. Exact solution using α
HA + H₂O ⇌ H₃O⁺ + A⁻
I/mol·L⁻¹: 0.010 0 0
C/mol·L⁻¹: -0.010α +0.010α +0.010α
E/mol·L⁻¹: 0.010(1-α) 0.010α 0.010α
[tex]K_{\text{a}} = \dfrac{\text{[H$_{3}$O$^{+}$][A$^{-}$]}}{\text{[HA]}} = 1.8 \times 10^{-5}[/tex]
[tex]\begin{array}{rcl}\dfrac{\text{[H$_{3}$O$^{+}$][A$^{-}$]}}{\text{[HA]}}& = &1.8 \times 10^{-5}\\\\ \dfrac{0.010\alpha\times 0.010\alpha }{0.010(1-\alpha)}& = &1.8 \times 10^{-5}\\\\ 0.000100\alpha^{2} & = & 0.010(1-\alpha)\times1.8 \times 10^{-5} \\& = &(0.010-0.010\alpha) \times 1.8 \times 10^{-5}\\& = & 1.8 \times 10^{-7} - 1.8 \times 10^{-7}\alpha\\0.000100\alpha^{2} + 1.8 \times 10^{-7}\alpha - 1.8 \times 10^{-7}& = & 0\\\alpha^{2}+ 0.00180\alpha - 0.00180& = & 0\\\end{array}[/tex]
a = 1; b = 0.00180; c = -0.00180
Solve using the quadratic formula
α = 0.041 536
[H₃O⁺] = 0.010× 0.0415 mol·L⁻¹ = 4.2 × 10⁻⁴ mol·L⁻¹
2. Approximate solution assuming x is negligible
HA + H₂O ⇌ H₃O⁺ + A⁻
I/mol·L⁻¹: 0.010 0 0
C/mol·L⁻¹: -x +x +x
E/mol·L⁻¹: 0.010 x x
[tex]\begin{array}{rcl}\dfrac{\text{[H$_{3}$O$^{+}$][A$^{-}$]}}{\text{[HA]}}& = &1.8 \times 10^{-5}\\\\ \dfrac{x\times x}{0.010}& = &1.8 \times 10^{-5}\\\\ x^{2} & = & 0.010\times1.8 \times 10^{-5} \\& = &1.8 \times 10^{-7}\\x & = & \sqrt{1.8 \times 10^{-7}}\\& = & \mathbf{4.3 \times 10^{-4}}\\\end{array}[/tex]
[H₃O⁺] = 0.010× 0.0415 mol·L⁻¹ = 4.3 × 10⁻⁴ mol·L⁻¹
3. Compare the results
The initial concentrations were known to two significant figures. The results agree to two significant figures ( ±1 unit in the second significant figure).