Answer:
[tex]3.95241\times 10^{21}\ Photons/second[/tex]
Explanation:
h = Planck's Constant = [tex]6.626\times 10^{-34}\ m^2\kgs[/tex]
A = Area = 1 m²
Distance between Earth and Sun = [tex]1.5\times 10^{11}\ m[/tex]
[tex]\lambda[/tex] = Wavelength = 580 nm
c = Speed of light = [tex]3\times 10^8\ m/s[/tex]
Power output of Sun
[tex]P=3.83\times 10^{26}\ W[/tex]
Intensity
[tex]I=\frac{P}{4\pi d^2}\times A\\\Rightarrow I=\frac{3.83\times 10^{26}}{4\pi (1.5\times 10^{11})^2}\times 1\\\Rightarrow I=1354.5854\ W[/tex]
Energy of photons
[tex]E=\frac{hc}{\lambda}\\\Rightarrow E=\frac{6.626\times 10^{-34}\times 3\times 10^8}{580\times 10^{-9}}\\\Rightarrow E=3.42724\times 10^{-19}\ J[/tex]
Number of photons
[tex]N=\frac{I}{E}\\\Rightarrow N=\frac{1354.5854}{3.42724\times 10^{-19}}\\\Rightarrow N=3.95241\times 10^{21}\ Photons/second[/tex]
The number of photons are [tex]3.95241\times 10^{21}\ Photons/second[/tex]