The required equivalent numbers are
A) [tex]\bold{4 \times 3^{4}=324}[/tex]
B) [tex]\bold{10^{3} \times 4^{2}=16000}[/tex]
C) [tex]\bold{(-3)^{2} \times(-4)^{3}=-576}[/tex]
D) [tex]\bold{(-8) \times(-3)^{4} \times(-2)^{3}=5184}[/tex]
SOLUTION:
Given that, we have to write a number equivalent to each of the following
A) [tex]4 \times 3^{4}[/tex]
On solving we get,
[tex]4 \times 3^{4} \rightarrow 4 \times 34 \rightarrow 4 \times 81 \rightarrow 324[/tex]
B) [tex]10^{3} \times 4^{2}[/tex]
On solving we get,
[tex]10^{3} \times 4^{2} \rightarrow 103 \times 42 \rightarrow 1000 \times 16 \rightarrow 16000[/tex]
C) [tex](-3)^{2} \times(-4)^{3}[/tex]
On solving we get,
[tex](-3)^{2} \times(-4)^{3} \rightarrow(-3)^{2} \times(-4)^{3} \rightarrow 9 \times(-64) \rightarrow-576[/tex]
D) [tex](-8) \times(-3)^{4} \times(-2)^{3}[/tex]
On solving we get,
[tex](-8) \times(-3)^{4} \times(-2)^{3} \rightarrow(-8) \times(-3)^{4} \times(-2)^{3} \rightarrow-8 \times 81 \times(-8) \rightarrow 64 \times 81 \rightarrow 5184[/tex]