Answer:
20.16744 rpm
Explanation:
Initial angular momentum=Final angular momentum
Initial angular momentum=[tex](0.5mr^{2}+ r^{2}(m1+m2+m3))[/tex] w1 hence [tex]w1R^{2}(0.5m+m1+m2+m3)[/tex] where w1 is initial rate of rotation/ velocity, m is mass of merry go round, m1 is mass of first child, m2 is mass of second child, m3 is mass of the third child, r is the radius of merry go round
Final angular momentum=[tex] (0.5mr^{2}+ r^{2}(m1+m3))w2[/tex]
Substituting 105 Kg for m, 1.4 m for r, 16 rpm for w1, 22 Kg for m1, 28 Kg for m2, 33 Kg for m3 we obtain
1.4*16*((0.5*105)+{22+28+33})=1.4*w2((0.5*105)+{22+33})
[tex]W2=\frac {1.4*16*((0.5*105)+{22+28+33})}{1.4*((0.5*105)+{22+33})}[/tex]
W2=20.16744 rpm