contestada

Calculate the linear momentum for each of the following cases. (a) A proton with mass 1.67 ✕ 10-27 kg moving with a velocity of 5.04 ✕ 106 m/s straight up. kg·m/s upward (b) A 15.0 g bullet moving with a velocity of 315 m/s to the right kg·m/s to the right (c) A 71 kg sprinter running with a velocity of 6.6 m/s southwest. kg·m/s southwest (d) Earth (m = 5.98 ✕ 1024 kg) moving in its orbit with a velocity equal to 2.98 ✕ 104 m/s forward. kg·m/s forward

Respuesta :

Answer:

[tex]8.4168\times 10^{-21}\ kgm/s[/tex] upward

4.725 kgm/s to the right

468.6 kgm/s southwest

[tex]1.782\times 10^{49}\ kgm/s[/tex] forward

Explanation:

When the mass of an object is multiplied by its velocity we get momentum

m = Mass

v = Velocity

Proton

[tex]p=mv\\\Rightarrow p=1.67\times 10^{-27}\times 5.04\times 10^6\\\Rightarrow p=8.4168\times 10^{-21}\ kgm/s[/tex]

The momentum of the proton is [tex]8.4168\times 10^{-21}\ kgm/s[/tex] upward

Bullet

[tex]p=mv\\\Rightarrow p=0.015\times 315\\\Rightarrow p=4.725\ kgm/s[/tex]

The momentum of the bullet is 4.725 kgm/s to the right

Sprinter

[tex]p=mv\\\Rightarrow p=71\times 6.6\\\Rightarrow p=468.6\ kgm/s[/tex]

The momentum of the sprinter is 468.6 kgm/s southwest

Earth

[tex]p=mv\\\Rightarrow p=5.98\times 10^{24}\times 2.98\times 10^4\\\Rightarrow p=1.782\times 10^{29}\ kgm/s[/tex]

The momentum of the sprinter is [tex]1.782\times 10^{29}\ kgm/s[/tex] forward

The linear momentum is the product of mass and velocity of the object.

The linear momentum is the product of mass and velocity in each case, we will calculate the linear momentum of the body;

a) For the proton;

p =  1.67 ✕ 10-27 kg ✕  5.04 ✕ 106 m/s = 8.4  ✕ 10-21 Kgm/s

b) For the bullet;

p = 0.015 Kg ✕ 315 m/s = 4.725  Kgm/s

c) For the sprinter:

p =  71 kg ✕ 6.6 m/s = 468.6  Kgm/s

d) For the earth;

p = 5.98 ✕ 10^24 kg ✕  2.98 ✕ 10^4 m/s = 1.78  ✕ 10^29  Kgm/s

Learn more: https://brainly.com/question/5624100