The coordinates of the vertices of a triangle are P(- 5, 3), 0(7, - 2) , and R(10, - 1) . Find the length of the midsegment that is parallel to overline PQ .

Respuesta :

Answer:

6.5 units

Step-by-step explanation:

The coordinates of the vertices of Δ PQR are P(-5,3), Q(7,-2) and R(10,-1).

So, coordinates of mid point of PR segment are [tex][\frac{-5+10}{2}, \frac{3-1}{2}]=(2.5,1)[/tex]

Again the coordinates of mid point of QR segment are [tex][\frac{7+10}{2} ,\frac{-2-1}{2} ]=(8.5,-1.5)[/tex]

Therefore, the length of the mid segment that is parallel to over-line PQ will be [tex]\sqrt{(8.5-2.5)^{2}+(-1.5-1)^{2}  } =\sqrt{42.25}= 6.5[/tex] units. ( Answer )