contestada

The circle below is centered at the point (3, 1) and has a radius of length 2.
What is its equation?

Respuesta :

Answer:

[tex]$ x^2 + y^2 - 3x -y +6 = 0 $[/tex]

Step-by-step explanation:

The equation of a circle with center [tex]$ (h,k) $[/tex] and radius [tex]$ r$[/tex] is given by

                 [tex]$ (x - h)^2 + (y - k)^2 = r^2 $[/tex]

Here the center is: [tex]$ (3,1) $[/tex] and radius is [tex]$ 2 $[/tex].

Therefore, we have:

[tex]$ (x - 3)^2 + (y - 1)^2 = 2^2 $[/tex]

[tex]$ \implies x^2 -3x +9 +y^2 -y +1 = 4 $[/tex]

[tex]$ \implies x^2 + y^2 -3x -y +6 = 0 $[/tex]

Answer:

Step-by-step explanation:

an equation of the circle Center at the w(a,b) and ridus : r is :

(x-a)² +(y-b)² = r²

in this exercice : r = 2 and  a =3   b =1

so : (x-3)² +(y-1)² = 2²