Respuesta :

Answer:

C=98°

Step-by-step explanation:

Given:

[tex]m\angle EBC= 130\°[/tex]

Property of Rhombus to be used:

Opposite angles are congruent and diagonals bisect the angles at the corners.

[tex]\therefore m\angle EBC=m\angle EDC =130\°[/tex]

and [tex]m\angle BED=m\angle DCB[/tex]

We know that angle sum of all 4 interior angles =360°

[tex]\therefore m\angle EBC+m\angle EDC+m\angle BED+m\angle DCB=360\°[/tex]

[tex]\therefore m\angle BCD=m\angle BED=\frac{360-(130+130)}{2}=\frac{360-260}{2}=\frac{100}{2}=50\°[/tex]

[tex]m\angle BCE=\frac{\angle BCD}{2}[/tex] [As diagonal bisect the angles at the corners]

[tex]m\angle BCE=\frac{50}{2}[/tex]

∴ [tex]m\angle BCE=25\°[/tex]

[tex]m\angle BCE= C-73\°[/tex]

We solve for [tex]C[/tex]

Plugging [tex]m\angle BCE=25\°[/tex] and dding [tex]73\°[/tex] to both sides

[tex]25+73= C-73+73[/tex]

[tex]98= C[/tex]

[tex]\therefore C=98\°[/tex]