Respuesta :

Answer:

The relation between m and n is ,  m = n      

Step-by-step explanation:

Given as :

The average for n class  = 0.82 = 82%

The average for m class  = 0.78 = 78%

The average for ( m + n ) class  = 80%

So , [tex]\frac{x_1 +x_2+x_3+x_4+ ....... + x_n}{n}[/tex] = 82%

And [tex]\frac{x_1 +x_2+x_3+x_4+ ....... + x_m}{m}[/tex] = 78%

And , [tex]\frac{(x_1+x_2+x_3+x_4+ ......+x_n ) + (x_1+x_2+x_+x_4+.....+x_m)}{m+n}[/tex] = 80%

So , 0.82×n + 0.78×m = 0.80× (m+n)

Or,  0.82×n - 0.80×n = 0.80×m -   0.78×m

Or,   0.02×n              =  0.02×m

Or,   [tex]\frac{m}{n}[/tex] =  [tex]\frac{0.02}{0.02}[/tex]

∴      [tex]\frac{m}{n}[/tex] = 1

I.e     m  =  n

Hence The relation between m and n is ,  m = n      Answer