Answer:
[tex]\frac{\textup{-17}}{\textup{216}}[/tex]
Step-by-step explanation:
Given:
Probability of winning $1, P($1) = [tex]\frac{\textup{75}}{\textup{216}}[/tex]
Probability of winning $2, P($2) = [tex]\frac{\textup{15}}{\textup{216}}[/tex]
Probability of winning $3, P($3) = [tex]\frac{\textup{1}}{\textup{216}}[/tex]
Probability of losing $1, P(-$1) = [tex]\frac{\textup{125}}{\textup{216}}[/tex]
Now,
Expected return = ∑ ( X × (PX) )
here, X is the payoff and, P(X) is the probability of winning
the losing amount is depicted with the negative payoff
Thus,
expected return = $1 × P($1) + $2 × P($2) + $3 × P($3) + (-$1) × P(-$1)
or
expected return = [tex]\frac{\textup{75}}{\textup{216}}[/tex] + [tex]\frac{\textup{15}}{\textup{216}}[/tex] + [tex]\frac{\textup{1}}{\textup{216}}[/tex] - [tex]\frac{\textup{125}}{\textup{216}}[/tex]
or
expected return = [tex]\frac{(1\times75) + (2\times15) + (3\times1) - (1\times125)}{\textup{216}}[/tex]
or
expected return = [tex]\frac{\textup{-17}}{\textup{216}}[/tex]