The width of a rectangular playground is 2x -5 feet and the length is 3x+9 feet write the polynomials that represent the area and the perimeter of the playground

Respuesta :

Answer:

Part 1) [tex]A(x)=6x^{2} +3x-45[/tex]

Part 2) [tex]P(x)=10x+8[/tex]

Step-by-step explanation:

Let

L -----> the length of a rectangular playground

W ---> the width of a rectangular playground

we have

[tex]W=(2x-5)\ ft[/tex]

[tex]L=(3x+9)\ ft[/tex]

step 1

Find the area of the playground

The area of a rectangle is equal to

[tex]A=LW[/tex]

substitute the given values

[tex]A(x)=(3x+9)(2x-5)\\A(x)=6x^{2} -15x+18x-45\\A(x)=6x^{2} +3x-45[/tex]

step 2

Find the perimeter of the playground

The perimeter of a rectangle is equal to

[tex]P=2(L+W)[/tex]

substitute the given values

[tex]P(x)=2((3x+9)+(2x-5))[/tex]

[tex]P(x)=2(5x+4)[/tex]

[tex]P(x)=10x+8[/tex]