Denote the initial speed of a cannon ball fired from a battleship as v0.the time of flight tmax of the cannonball for this maximum range r is given by when the initial projectile angle is 45◦ with respect to the horizontal, it gives a maximum range r.

Respuesta :

Answer: [tex]\sqrt{2}\frac{V_{o}}{g}[/tex]

Explanation:

This situation is related to projectile motion and the main equation in this case is:

[tex]y=y_{o}+V_{o}sin\theta t-\frac{gt^{2}}{2}[/tex]

Where:

[tex]y_{o}=0[/tex]  is the initial height of the cannon ball

[tex]y=0[/tex]  is the final height of the cannon ball

[tex]V_{o}[/tex]  is the initial speed of the cannon ball

[tex]\theta=45\°[/tex] is the angle at which the cannon ball  was fired

[tex]g[/tex]  is the acceleration due gravity

[tex]t[/tex] is the time the cannon ball is in air

[tex]0=0+V_{o}sin\theta t-\frac{gt^{2}}{2}[/tex]  

Isolating [tex]t[/tex]:

[tex]t=\frac{2V_{o}sin\theta}{g}[/tex]  

[tex]t=\frac{2V_{o}sin(45\°)}{g}[/tex]

Since  [tex]sin(45\°)=\frac{\sqrt{2}}{2}[/tex]:

[tex]t=2\frac{V_{o}}{g}\frac{\sqrt{2}}{2}[/tex]

Finally:

[tex]t=\sqrt{2}\frac{V_{o}}{g}[/tex]