Respuesta :

Answer:

The perimeter of triangle ABC is [tex]P=21.8\ units[/tex]

Step-by-step explanation:

The perimeter of triangle ABC is equal to

[tex]P=AB+BC+AC[/tex]

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

we have

[tex]A(-4,0),B(-1, 6),C(3,-1)[/tex]

step 1

Find the distance AB

[tex]A(-4,0),B(-1, 6)[/tex]

substitute in the formula

[tex]d_A_B=\sqrt{(6-0)^{2}+(-1+4)^{2}}[/tex]

[tex]d_A_B=\sqrt{(6)^{2}+(3)^{2}}[/tex]

[tex]d_A_B=\sqrt{45}\ units[/tex]

step 2

Find the distance BC

[tex]B(-1, 6),C(3,-1)[/tex]

substitute in the formula

[tex]d_B_C=\sqrt{(-1-6)^{2}+(3+1)^{2}}[/tex]

[tex]d_B_C=\sqrt{(-7)^{2}+(4)^{2}}[/tex]

[tex]d_B_C=\sqrt{65}\ units[/tex]

step 3

Find the distance AC

[tex]A(-4,0),C(3,-1)[/tex]

substitute in the formula

[tex]d_A_C=\sqrt{(-1-0)^{2}+(3+4)^{2}}[/tex]

[tex]d_A_C=\sqrt{(-1)^{2}+(7)^{2}}[/tex]

[tex]d_A_C=\sqrt{50}\ units[/tex]

step 4

Find the perimeter

[tex]P=AB+BC+AC[/tex]

substitute the values

[tex]P=\sqrt{45}+\sqrt{65}+\sqrt{50}=21.8\ units[/tex]