Answer:
See explanation
Step-by-step explanation:
Given: m∠SQR=55°.
m∠PQS=35°.
Prove: △PQR is a right triangle.
Paragraph proof
[tex]\begin{array}{ccc}&\text{Statement}&\text{Reason}\\ \\1.&m\angle SQR = 55^{\circ}&\text{Given}\\2.&m\angle PQS = 35^{\circ}&\text{Given}\\3. &m\angle SQR+m\angle PQS=m\angle PQR&\text{Angle Addition Postulate}\\4.&m\angle PQR=55^{\circ}+35^{\circ}&\text{Substitution Property of Equality}\\5. & m\angle PQR=90^{\circ}&\text{Simplify}\\6. &\angle PQR\text{ is a }&\text{right angle }\\&\text{right angle}&\text{d}\\ 7.&\triangle PQR&\triangle\text{d} \end{array}[/tex]
Here d means definition