Answer the following question about the function whose derivative is given below

f'(x)=(x-3)^2(x+6)

(a) what are the critical points of f?
(b) on what intervals is f increasing or decreasing? (if there is no interval put no interval)
(c) At what points, if any, does f assume local maximum and minima values. ( if there is no local maxima put mo local maxima) if there is no local minima put no local minima

Respuesta :

Answer:

a) The critical points are [tex]x = 3[/tex] and [tex]x = -6[/tex].

b) f is decreasing in the interval [tex](-\infty, -6)[/tex]

f is increasing in the intervals [tex](-6,3)[/tex] and [tex](3,\infty)[/tex].

c) Local minima: [tex]x = -6[/tex]

Local maxima: No local maxima

Step-by-step explanation:

(a) what are the critical points of f?

The critical points of f are those in which [tex]f^{\prime}(x) = 0[/tex]. So

[tex]f^{\prime}(x) = 0[/tex]

[tex](x-3)^{2}(x+6) = 0[/tex]

So, the critical points are [tex]x = 3[/tex] and [tex]x = -6[/tex].

(b) on what intervals is f increasing or decreasing? (if there is no interval put no interval)

For any interval, if [tex]f^{\prime}[/tex] is positive, f is increasing in the interval. If it is negative, f is decreasing in the interval.

Our critical points are [tex]x = 3[/tex] and [tex]x = -6[/tex]. So we have those following intervals:

[tex](-\infty, -6), (-6,3), (3, \infty)[/tex]

We select a point x in each interval, and calculate [tex]f^{\prime}(x)[/tex].

So

-------------------------

[tex](-\infty, -6)[/tex]

[tex]f^{\prime}(-7) = (-7-3)^{2}(-7+6) = (100)(-1) = -100[/tex]

f is decreasing in the interval [tex](-\infty, -6)[/tex]

---------------------------

[tex](-6,3)[/tex]

[tex]f^{\prime}(2) = (2-3)^{2}(2+6) = (1)(8) = 8[/tex]

f is increasing in the interval [tex](-6,3)[/tex].

------------------------------

[tex](3, \infty)[/tex]

[tex]f^{\prime}(4) = (4-3)^{2}(4+6) = (1)(10) = 10[/tex]

f is increasing in the interval [tex](3,\infty)[/tex].

(c) At what points, if any, does f assume local maximum and minima values. ( if there is no local maxima put mo local maxima) if there is no local minima put no local minima

At a critical point x, if the function goes from decreasing to increasing, it is a local minima. And if the function goes from increasing to decreasing, it is a local maxima.

So, for each critical point is this problem:

At [tex]x = -6[/tex], f goes from decreasing to increasing.

So [tex]x = -6[/tex], f assume a local minima value

At [tex]x = 3[/tex], f goes from increasing to increasing. So, there it is not a local maxima nor a local minima. So, there is no local maxima for this function.