Answer: 86.64%
Step-by-step explanation:
Let x be a random variable that represents the diameter of metal samples.
Given : Population mean : [tex]\mu=10[/tex]
Standard deviation: [tex]s=0.50[/tex]
Specified tolerance on the diameter is 0.75 mm.
i.e. range of diameter = 10-0.75< x <10+0.75 = 9.25< x< 10.75
Formula to find the z-score corresponds to x: [tex]z=\dfrac{x-\mu}{s}[/tex]
At x= 0.75, [tex]z=\dfrac{9.25-10}{0.50}=-1.5[/tex]
[tex]z=\dfrac{9.25-10}{0.50}=1.5[/tex]
Using standard normal table for z-value,
P-value : [tex]p(-1.5<x<1.5)=1-2(P(z>1.5))\\\\=1-2(0.0668072)=0.8663856\approx0.8664=86.64\%[/tex]
∴ Percentage of samples manufactured using this process satisfy the tolerance specification = 86.64%