Answer:
[tex]1.32*10^{-11}[/tex]
Explanation:
Magnetic field [tex]B=B_{max}sin(wt)[/tex]
But [tex]w=2f\pi[/tex] and f is given as 69.5Hz [tex]B_{max}[/tex] is 0.00100T
Flux through cell, [tex]\theta=B*Area of cell[/tex]
Area of cell=[tex]\pi R^{2)[/tex] and radius of cell is 6.2µm/2=3.1µm converted to mm it's [tex]3.1*10^{-6}[/tex]
Change in magnetic flux=[tex]\frac {d\theta}{dt}=\frac {d}{dt}sin wt*\pi R^{2}B_{max}[/tex]
[tex]\frac {d\theta}{dt}=w cos wt*\pi R^{2}B_{max}[/tex]
magnitude of induced emf [tex]\epsilon= w cos wt*\pi R^{2}B_{max}[/tex] where [tex]wB_{max}\pi R^{2}[/tex] gives maximum value of induced emf
[tex]\epsilon_{max}=wB_{max}\pi R^{2}[/tex]
Since [tex]w=2f\pi=2*69.5* \pi[/tex], [tex]B_{max}=0.00100T[/tex] and R=[tex]3.1*10^{-6}[/tex]
[tex]\epsilon_{max}=2*69.5* \pi *0.00100*\pi *(3.1*10^{-6})^{2}[/tex]
=[tex]1.31837*10^{-11}[/tex]
Rounded off to 2 decimal places, max emf= [tex]1.32*10^{-11}[/tex]