Answer:
[tex]F_a_v_g=7093333.33N*s[/tex]
Explanation:
The impulse or average force in classical mechanics is the variation in the linear momentum that a physical object experiences in a closed system. It is defined by the following equation:
[tex]F_a_v_g=m*\frac{\Delta v}{\Delta t}=m*\frac{v_2-v_1}{t_2-t_1}[/tex]
Where:
[tex]m=mass\hspace{3}of\hspace{3}the\hspace{3}object[/tex]
[tex]v_2=final\hspace{3}velocity\hspace{3}of\hspace{3}the\hspace{3}object\hspace{3}at\hspace{3}the\hspace{3}end\hspace{3}of\hspace{3}the\hspace{3}time\hspace{3}interval[/tex]
[tex]v_1=initial\hspace{3}velocity\hspace{3}of\hspace{3}the\hspace{3}object\hspace{3}when\hspace{3}the\hspace{3}time\hspace{3}interval\hspace{3}begins.[/tex]
[tex]t_2=final\hspace{3}time[/tex]
[tex]t_1=initial\hspace{3}time[/tex]
Asumming v1=0 and t1=0:
[tex]F_a_v_g=m* \frac{v_2}{t_2} =(24.7)*\frac{784}{2.73*10^{*3} } =7093333.333N*s[/tex]