Answer:
42.5 m/s
Explanation:
Given:
x₀ = 0 m
x = 62 m
y₀ = 80 m
y = 0 m
v₀ᵧ = 0 m/s
aₓ = 0 m/s²
aᵧ = -9.8 m/s²
Find: v
First, find the time it takes to land.
y = y₀ + v₀ᵧ t + ½ aᵧ t²
(0 m) = (80 m) + (0 m/s) t + ½ (-9.8 m/s²) t²
t = 4.04 s
Find the horizontal component vₓ:
x = x₀ + vₓ t − ½ aₓ t²
(62 m) = (0 m) + vₓ (4.04 s) − ½ (0 m/s²) (4.04 s)²
vₓ = 15.3 m/s
Find the vertical component vᵧ:
vᵧ = aᵧ t + v₀ᵧ
vᵧ = (-9.8 m/s²) (4.04 s) + (0 m/s)
vᵧ = -39.6 m/s
Find the speed using Pythagorean theorem:
v = √(vₓ² + vᵧ²)
v = √((15.3 m/s)² + (-39.6)²)
v = 42.5 m/s