Consider the following reaction. N2(g) + O2(g) = 2 NO(g) (a) If Kc for this reaction is 1.5 ✕ 10−10, and a reaction system at equilibrium has an [N2] of 0.043 M and an [O2] of 0.043 M, what is the equilibrium concentration of NO? M (b) What is the value of Kc for the reaction 2 NO(g) equilibrium reaction arrow N2(g) + O2(g)? (c) Does the equilibrium in Part (b) favor the reactants or the products? the reactants the products neither reactants nor products

Respuesta :

Answer:

For a: The concentration of NO at equilibrium is [tex]5.27\times 10^{-7}M[/tex]

For b: The value of [tex]K_c'[/tex] is [tex]6.66\times 10^{10}[/tex]

For c: The correct answer is product favored.

Explanation:

  • For a:

The given chemical reaction follows:

[tex]N_2(g)+O_2(g)\rightleftharpoons 2NO(g)[/tex]

The expression of [tex]K_c[/tex] for above equation follows:

[tex]K_c=\frac{[NO]^2}{[N_2][O_2]}[/tex]

We are given:

[tex]K_c=1.5\times 10^{-10}[/tex]

[tex][N_2]_{eq}=0.043M[/tex]

[tex][O_2]_{eq}=0.043M[/tex]

Putting values in above equation, we get:

[tex]1.5\times 10^{-10}=\frac{[NO]^2}{0.043\times 0.043}[/tex]

[tex][NO]=\sqrt{(1.5\times 10^{-15}\times 0.043\times 0.043)}=5.27\times 10^{-7}M[/tex]

Hence, the concentration of NO at equilibrium is [tex]5.27\times 10^{-7}M[/tex]

  • For b:

The given chemical reaction follows:

[tex]2NO(g)\rightleftharpoons N_2(g)+O_2(g)[/tex]

The expression of [tex]K_c'[/tex] for above equation follows:

[tex]K_c'=\frac{[N_2][O_2]}{[NO]^2}[/tex]

As, the above reaction is the reverse of equation in part a. So, the value of [tex]K_c'[/tex] will be inverse of [tex]K_c[/tex]

[tex]K_c'=\frac{1}{K_c}\\\\K_c'=\frac{1}{1.5\times 10^{-10}}=6.66\times 10^{10}[/tex]

Hence, the value of [tex]K_c'[/tex] is [tex]6.66\times 10^{10}[/tex]

  • For c:

There are 3 conditions:

  • When [tex]K_{c}>1[/tex]; the reaction is product favored.
  • When [tex]K_{c}<1[/tex]; the reaction is reactant favored.
  • When [tex]K_{c}=1[/tex]; the reaction is in equilibrium.

For the reaction in part 'b', the value of [tex]K_c'[/tex] is [tex]6.66\times 10^{10}[/tex]

The value of [tex]K_c'[/tex] is very high than 1. So, the equilibrium in part 'b' is product favored.

Hence, the correct answer is product favored.