Consider the reaction N2(g) + O2(g) â 2 NO(g) K = 0.0025 A rigid container initially contains 8.00 atm of nitrogen and 5.00 atm of oxygen. What will be the partial pressure of nitrogen at equilibrium?

Respuesta :

Answer:

7.8458 atm

Explanation:

For the reaction  

[tex] N_{2}(g) + O_{2}(g) - -> 2NO(g)[/tex]

Kp is defined as:

[tex]Kp=\frac{(P_{NO})^{2}}{P(N_{2})*P(O_{2})}[/tex]

The conditions in the system are:

                   O2      N2             NO

initial            5 atm     8 atm           0

equilibrium     5-x           8-x              2x

From the stoichiometric relationship in the reaction we know that to produce 2x of NO we need x of N2 and O2.

Replacing the values in the expression for Kp we get

[tex]Kp=\frac{(2x)^{2}}{(5-x)*(8-x)} - - ->Kp(x^{2}-13x+40)=4x^{2}[/tex]

working with this expression

[tex]Kp(x^{2}-13x+40)=4x^{2} ---> Kpx^{2}-13Kpx+40Kp=4x^{2}[/tex]

[tex]0=4x^{2}-Kpx^{2}+13Kpx-40Kp - - -> (4-Kp)x^{2}+13Kpx-40Kp[/tex]

This a quadratic equation with

a=(4-Kp)

b=13*Kp

C=-40*Kp

Replacing the given value for Kp we get:

a=3.9975

b=0.0325

C=-0.1

the solution for this equation is given by the next equation:

[tex]x=\frac{-b(+-)\sqrt{b^{2}-4ac}}{2a}[/tex]

we will get to values for X

[tex]x_{1}= \frac{-0.0325+\sqrt{0.0325^{2}-4*3.9975*(-0.1)}}{2*3.9975}=0.1541[/tex]

[tex]x_{2}= \frac{-0.0325-\sqrt{0.0325^{2}-4*3.9975*(-0.1)}}{2*3.9975}=-0.1622[/tex]

Since negative partial pressures don't have physical meaning the solution for the system is x=0.1541.

So the partial pressure of nitrogen at the equilibrium is

[tex] P(N_{2})=8 atm - x = 8 atm - 0.1541 =7.8458 atm [/tex]