A hypothesis will be used to test that a population mean equals 10 against the alternative that the population mean is more than 10 with known Ï. What is the critical value of z-score for the following significance levels?
A) 0.01
B) 0.05
C) 0.10

Respuesta :

Answer:

A) 2.58

B) 1.96

C) 1.65

Step-by-step explanation:

A hypothesis used to test that

[tex]H_o : \mu  = 10 [/tex]

against the alternatives [tex]H1 : \mu [/tex] not equal to 10

if null hypothesis is true, then distribution of test statics follow

[tex]Zo = \frac{\bar x - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

for two sided alternatives  hypothesis [tex]( H1: \mu \neq 7)[/tex], then P value is

[tex]P = 2[1- \phi(\left | Zc \right |)] [/tex]                          (1)

a)significance level  [tex]\alpha = 0.01[/tex]

from 1 eq we get

[tex]\pi (\left | Zc \right |) = P(Zo<\left | Zc \right |) = 1 - \frac{0.01}{2}  = 0.995[/tex]

Therefore  [tex]\left | Zc \right | = 2.58[/tex]    FROM Z TABLE

B) significance level  [tex]\alpha = 0.05[/tex]

from 1st equation we get

[tex]\pi (\left | Zc \right |) = P(Zo < \left | Zc \right |) = 1 - \frac{0.05}{2}  = 0.975[/tex]

Therefore  [tex]\left | Zc \right | = 1.96[/tex]    FROM Z TABLE

C) significance level  [tex]\alpha = 0.10[/tex]

from 1 eq we get

[tex]\pi (\left | Zc \right |) = P(Zo<\left | Zc \right |) = 1 - \frac{0.10}{2}  = 0.95[/tex]

Therefore  [tex]\left | Zc \right | = 1.65[/tex]    FROM Z TABLE