Answer:
A) 2.58
B) 1.96
C) 1.65
Step-by-step explanation:
A hypothesis used to test that
[tex]H_o : \mu = 10 [/tex]
against the alternatives [tex]H1 : \mu [/tex] not equal to 10
if null hypothesis is true, then distribution of test statics follow
[tex]Zo = \frac{\bar x - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
for two sided alternatives hypothesis [tex]( H1: \mu \neq 7)[/tex], then P value is
[tex]P = 2[1- \phi(\left | Zc \right |)] [/tex] (1)
a)significance level [tex]\alpha = 0.01[/tex]
from 1 eq we get
[tex]\pi (\left | Zc \right |) = P(Zo<\left | Zc \right |) = 1 - \frac{0.01}{2} = 0.995[/tex]
Therefore [tex]\left | Zc \right | = 2.58[/tex] FROM Z TABLE
B) significance level [tex]\alpha = 0.05[/tex]
from 1st equation we get
[tex]\pi (\left | Zc \right |) = P(Zo < \left | Zc \right |) = 1 - \frac{0.05}{2} = 0.975[/tex]
Therefore [tex]\left | Zc \right | = 1.96[/tex] FROM Z TABLE
C) significance level [tex]\alpha = 0.10[/tex]
from 1 eq we get
[tex]\pi (\left | Zc \right |) = P(Zo<\left | Zc \right |) = 1 - \frac{0.10}{2} = 0.95[/tex]
Therefore [tex]\left | Zc \right | = 1.65[/tex] FROM Z TABLE