contestada

Heather in her Corvette accelerates at the rate of (3.00i - 2.00j) m/s2, while Jill in her Jaguar accelerates at (1.00i + 3.00j) m/s2. They both start from rest at the origin of an xy coordinate system. After 5.00 s,

a) What is heather’s speed with respect to Jill?
_____________

b) How far apart are they?
______________

c) What is heather’s acceleration relative to Jill?
______________

Respuesta :

Answer:

(a) [tex]10\hat{i} - 25\hat{j}[/tex] m/s

(b) [tex]50\hat{i} - 75\hat{j}[/tex] m

(c) [tex](2.00\hat{i} - 5.00\hat{j}) m/s^{2}[/tex]

Solution:

As per the solution:

Acceleration of Heather, a = [tex](3.00\hat{i} - 2.00\hat{j})[/tex]

Acceleration of Jill, a' = [tex](1.00\hat{i} + 3.00\hat{j})[/tex]

Time interval, t = 5.00 s

Now,

(a) Heather's velocity, v = at = [tex](3.00\hat{i} - 2.00\hat{j})\times 5.00 = 15\hat{i} - 10\hat{j}[/tex] m/s

Jill's velocity, v' = a't = [tex](1.00\hat{i} + 3.00\hat{j})\times 5.00 = 5\hat{i} + 15\hat{j}[/tex] m/s

Now, speed oh Heather w.r.t Jill = v - v' = [tex](15\hat{i} - 10\hat{j}) - (5\hat{i} + 15\hat{j}) = 10\hat{i} - 25\hat{j}[/tex] m/s

(b) Distance between Heather and Jill:

d = [tex](v - v')t = (10\hat{i} - 25\hat{j})\times 5 = 50\hat{i} - 75\hat{j}[/tex] m

(c) Heather's acceleration w.r.t Jill:

[tex]a_{r} = a - a' = (3.00\hat{i} - 2.00\hat{j}) - (1.00\hat{i} + 3.00\hat{j}) = (2.00\hat{i} - 5.00\hat{j}) m/s^{2}[/tex]