Answer:
Explanation:
Given
coefficient of kinetic friction[tex](\mu _k)[/tex]=0.34
inclination [tex]\theta =44[/tex]
weight of block=51 N
(a) When block is moving upward friction force acts downward
thus
[tex]Fsin\theta -W-f_r=0[/tex]
as block is moving with constant velocity thus [tex]F_{net}[/tex] is zero
[tex]f_r=\mu _kN=0.34\times Fcos\theta [/tex]
[tex]F\left ( \sin \theta -\mu \cos \theta \right )=W[/tex]
[tex]F=\frac{51}{0.45}=113.31 N[/tex]
(b)When Block slides down the wall friction changes its direction to oppose the block
[tex]Fsin\theta -W+f_r=0[/tex]
[tex]F\left ( \sin \theta +\mu \cos \theta \right )=W[/tex]
[tex]F=\frac{W}{\left ( \sin \theta +\mu \cos \theta \right )}[/tex]
[tex]F=\frac{51}{0.939}=54.299 N[/tex]