A silver wire 2.6 mm in diameter transfers a charge of 420 C in 80 min. Silver contains 5.8 x 10- free electrons per cubic meter. (a) What is the current in the wire? (b) What is the magnitude of the drift velocity of the electrons in the wire?

Respuesta :

Answer:

a). 87.5 mA or [tex]87.5 x10^{-3}[/tex]A

b). 1.78 [tex]\frac{m}{s}[/tex]

Explanation:

[tex]d=2.6 mm \\Q=420C\\t=80min\\n=5.8x10^{28} \\q=1.6x10^{-19}[/tex]

n the number of free electrons is 28 in text reference and if they don't give q is take as the charge of electron.

a).

[tex]I=\frac{Q}{t}\\ I= \frac{420 C}{80 min}*\frac{1min}{60 s} =\frac{420 C}{4800s}\\  I=87.5 x10^{-3}[/tex]A

b).

[tex]I=n*abs (q)*V_{d}*A[/tex]

[tex]A= \pi * (\frac{d}{2})^{2} \\A=\pi (*\frac{2.6x10^{-3} m}{2})^{2}  \\A=5.309x10^{-6}[/tex]

[tex]V_{d} =\frac{I}{n*abs(q)*A} \\V_{d}=\frac{87.5 x10^{-2} }{5.8x^10{28} *1.6x^{-19} *5.3x^{6} }\\V_{d}=1.78 \frac{m}{s}[/tex]

The current flow is the flow of electron inside the particle or wire.

  • The current in the wire is [tex]87.5\times10^{-19}[/tex] ampere.
  • The magnitude of the drift velocity of the electron in the wire is 1.78 m per sec

What is current flow in a particle?

The current flow is the flow of electron inside the particle or wire. It can be given as,

[tex]I=nq(vA)[/tex]

Here [tex]n[/tex] is the number of electron, [tex]q[/tex] is the charge of the particle  [tex]v[/tex] is the drift velocity of electron and [tex]A[/tex] is the area.

Given information-

The diameter of the silver wire is 2.6 mm.

The charge of the wire is 420 C in 80 min or 4800 seconds.

  • (a) The current in the wire-

Current is the charge per unit time. thus,

[tex]I=\dfrac{420}{4800} \\I=87.5\times10^{-19}[/tex]

Thus the current in the silver wire is [tex]87.5\times10^{-19}[/tex] ampere.

  • (b) The magnitude of the drift velocity of the electrons in the wire-

The area of the given wire is,

[tex]A=\pi\times\dfrac{0.0026^2}{4} \\A=5.309\times10^{-6}[/tex]

And the number of free electron in silver is 28(let). then,

[tex]n=5.8\times10^{28}[/tex]

Hence, use the above formula in order to find the velocity of the electron as,

[tex]v=\dfrac{87.5\times10^{-2}}{5.8\times10^{28}\times1.6\times10^{-19}\times5.3\times10^{6}}\\v=1.78\rm m/s[/tex]

Hence,

  • The current in the wire is [tex]87.5\times10^{-19}[/tex] ampere.
  • The magnitude of the drift velocity of the electron in the wire is 1.78 m per sec.

Learn more about the electric current here;

https://brainly.com/question/1100341