Answer:
[tex]F = 6u_{max}\mu \pi \ N/M[/tex]
Explanation:
Given that
Viscosity of fluid = μ
[tex]u=u_{max}\left ( 1-\dfrac{r^n}{R^n} \right )[/tex]
We know that shear stress `
[tex]\tau =-\mu \dfrac{du}{dr}[/tex]
F= τ A
A=2πRL
When n=3
[tex]u=u_{max}\left ( 1-\dfrac{r^3}{R^3} \right )[/tex]
[tex]\dfrac{du}{dr}=- 3u_{max}\dfrac{r^2}{R^3}[/tex]
[tex]\tau = 3\mu u_{max}\dfrac{r^2}{R^3}[/tex]
[tex]F = 3u_{max}\mu \dfrac{r^2}{R^3}\time 2\pi RL[/tex]
At pipe surface r=R
[tex]F = 3u_{max}\mu \dfrac{R^2}{R^3}\time 2\pi RL[/tex]
[tex]F = 6u_{max}\mu \pi L[/tex]
So force per unit length
[tex]F = 6u_{max}\mu \pi \ N/M[/tex]