At time t=9 seconds, the mass of an object is 51 grams and changing at a rate of 9gs. At this same time, the acceleration is 9ms2 and changing at a rate of â2ms3. By the product rule, the force on the object is changing at the rate of ._________

Respuesta :

Answer:

0.183 N/s

Step-by-step explanation:

Given

mass of object[tex]=51 gm[/tex]

acceleration [tex]a\left ( \frac{\mathrm{d} v}{\mathrm{d} t}\right )=9 m/s^2[/tex]

[tex]\frac{\mathrm{d} m}{\mathrm{d} t}=9 gm/s[/tex]

Force on a object is given by

[tex]F\left ( t\right )=m\left ( t\right )a\left ( t\right )[/tex]

Change in force is given by

[tex]\frac{\mathrm{d} F\left ( t\right )}{\mathrm{d} t}=\frac{\mathrm{d} m}{\mathrm{d} t}a\left ( t\right )+m\left ( t\right )\frac{\mathrm{d} a\left ( t\right )}{\mathrm{d} t}[/tex]

[tex]\frac{\mathrm{d} F\left ( t\right )}{\mathrm{d} t}=9\times 10^{-3}\times 9+2\times 51\times 10^{-3}[/tex]

[tex]=183\times 10^{-3}=0.183 N/s[/tex]