The particle travels along the path defined by the parabola y=0.5x2, where x and y are in ft. If the component of velocity along the x axis is vx=(2t)ft/s, where t is in seconds, determine the particle's distance from the origin O. t = 3 s. When t=0, x=0, y=0. Determine the magnitude of its acceleration when t = 3 s.

Respuesta :

Answer:

D=41.48 ft

[tex]a=54.43\ ft/s^2[/tex]

Explanation:

Given that

y=0.5 x²                      

Vx= 2 t

We know that

[tex]V_x=\dfrac{dx}{dt}[/tex]

At t= 0 ,x=0  

[tex]x=\int V_x.dt[/tex]

At t= 3 s

[tex]x=\int_{0}^{3} 2t.dt[/tex]

[tex]x=[t^2\left\right ]_0^3[/tex]

x= 9 ft

When x= 9 ft then

y= 0.5 x 9²  ft

y= 40.5 ft

So distance from origin is

x= 9 ft ,y= 40.5 ft

[tex]D=\sqrt{9^2+40.5^2} \ ft[/tex]

D=41.48 ft

[tex]a_x=\dfrac{dV_x}{dt}[/tex]

Vx= 2 t

[tex]a_x= 2\ ft/s^2[/tex]

At t= 3 s , x= 9 ft

y=0.5 x²    

[tex]a_y=\dfrac{d^2y}{dt^2}[/tex]

y=0.5 x²    

[tex]\dfrac{dy}{dt}=x\dfrac{dx}{dt}[/tex]

[tex]\dfrac{d^2y}{dt^2}=\left(\dfrac{dx}{dt}\right)^2+x\dfrac{d^2x}{dt^2}[/tex]

Given that

[tex]\dfrac{dx}{dt}=2t[/tex]

[tex]\dfrac{dx}{dt}=2\times 3[/tex]

[tex]\dfrac{dx}{dt}=6\ ft/s[/tex]

[tex]a_y=\dfrac{d^2y}{dt^2}=6^2+9\times 2\ ft/s^2[/tex]

[tex]a_y=54\ ft/s^2[/tex]

[tex]a=\sqrt{a_x^2+a_y^2}\ ft/s^2[/tex]

[tex]a=\sqrt{2^2+54^2}\ ft/s^2[/tex]

[tex]a=54.43\ ft/s^2[/tex]