Respuesta :

Answer:

1130 m

Explanation:

Given:

a = 17.7 m/s²

v₀ = 119 m/s

v = 233 m/s

Find: Δx

v² = v₀² + 2aΔx

(233 m/s)² = (119 m/s)² + 2(17.7 m/s²) Δx

Δx ≈ 1130 m

Answer:

A jet fighter accelerates at 17.7[tex]m/s^2[/tex] increasing its velocity from 119 m/s to 233 m/s. The distance that it can travel in that time is 1133.559 m or 1.13 km

Explanation :

From the Given statements, we know that  

Initial Velocity (u) = 119 m/s

Final Velocity (v) = 233 m/s

Acceleration (a) = 17.7 [tex]m/s^2[/tex]

Applying the Equation of Motion

                      [tex]\mathrm{v}^{2}-\mathrm{u}^{2}=2 \mathrm{as}[/tex]

substituting the values in above equation, we find

              s= [tex]\frac{v^{2}-u^{2}}{2 a}[/tex] =   [tex]\frac{(233)^{2}-(119)^{2}}{2 \times 17.7}[/tex]

                     =[tex]\frac{54289-14161}{35.4}[/tex]  = 1133.559 m = 1.13 km

Therefore, the distance travelled is 1.13 Km