Answer:
Wavelength = 0.15 nm
Frequency = [tex]1939.3939\times 10^{15}Hz[/tex]
Explanation:
We have given photon energy E = 8 KeV = 8000 eV
In question it is given that [tex]1eV=1.6\times 10^{-19}J[/tex]
So [tex]8000eV=1.6\times 8000\times 10^{-19}=12800\times 10^{-19}j[/tex]
Plank's constant [tex]h=6.6\times 10^{-34}js[/tex]
We know that photon energy is given by [tex]E=h\nu[/tex]
So [tex]12800\times 10^{-19}=6.6\times 10^{-34}\nu[/tex]
[tex]\nu =1939.3939\times 10^{15}Hz[/tex]
Now wavelength [tex]\lambda =\frac{c}{f}=\frac{3\times 10^8}{1939.3939\times 10^{15}}=0.0015\times 10^{-7}m=0.15nm[/tex]