Answer:
u = 104.68 m/s
Explanation:
given,
horizontal distance = 150 m
elevation of 12.4 m
angle = 8.6°
horizontal motion = x = u cos θ. t .............(1)
vertical motion =
[tex]y = u sin \theta - \dfrac{1}{2}gt^2[/tex]................(2)
from equation(1) and (2)
[tex]y = x tan \theta - \dfrac{gx^2}{2u^2cos^2\theta}[/tex]..........{3}
[tex]12.4 = 150\times tan (8.6) - \dfrac{9.8\times 150^2}{2u^2cos^2(8.6)}[/tex]
[tex]\dfrac{9.8\times 150^2}{2u^2cos^2(8.6)} = 10.29[/tex]
[tex]\dfrac{9.8\times 150^2}{2\times 10.29\times cos^2(8.6)} = u^2[/tex]
[tex]u = \sqrt{10959.34}[/tex]
u = 104.68 m/s
The initial speed of the ball is u = 104.68 m/s