A singly charged positive ion has a mass of 3.20 ✕ 10-26 kg. After being accelerated from rest through a potential difference of 858 V, the ion enters a magnetic field of 0.920 T along a direction perpendicular to the direction of the field. Calculate the radius of the path of the ion in the field.

Respuesta :

Answer:

Radius of the path will be [tex]20.136\times 10^{-4}m[/tex]

Step-by-step explanation:

We have given mass of the singly charged positive ion [tex]m=3.20\times 10^{-26}kg[/tex]

Potential difference V = 858 volt

Magnetic force on the charge particle is given by [tex]F=qvB[/tex], here q is charge v is velocity and B is magnetic field

And centripetal force is given by [tex]F=\frac{mv^2}{r}[/tex]

These forces will be equal

So [tex]\frac{mv^2}{r}=qvB[/tex]

[tex]r=\frac{mv}{qB}[/tex]

We know that [tex]V=\frac{W}{q}=\frac{\frac{1}{2}mv^2}{q}[/tex]

[tex]v=\sqrt{\frac{2Vq}{m}}=\sqrt{\frac{2\times 858\times 1.6\times 10^{-19}}{3.2\times 10^{-26}}}=9.2628\times 10^{3}m/sec[/tex]

Now radius [tex]r=\frac{mv}{qB}=\frac{3.2\times 10^{-26}\times 9.2628\times 10^{3}}{1.6\times 10^{-19}\times 0.920}=20.136\times 10^{-4}m[/tex]