contestada

A wet bar of soap slides down a ramp 9.2 m long inclined at 8.0∘ .

How long does it take to reach the bottom? Assume μk = 0.056.
Express your answer to two significant figures and include the appropriate units.

Respuesta :

Answer:

The time taken by the bar to reach the bottom t=4.886s

Given:

Displacement of the bar S=9.2m

Angle of inclination [tex]\theta=8.0^{\circ}[/tex]

Coefficient of friction factor [tex]\mu k=0.056[/tex]

To find:

How long it takes to reach the bottom ‘t’

Step by Step Explanation:

Solution:

We know that the formula for weight of the soap bar is given as

[tex]F_{g}=m g \sin \theta[/tex]

The frictional force acting on this soap bar is determined by

[tex]F_{f}=\mu m g \cos \theta[/tex]

To determine the constant acceleration of the bar, we derive as

[tex]F=m a[/tex]

Here [tex]F=F_{g}-F_{f}[/tex] and thus

[tex]F_{g}-F_{f}=m a[/tex][tex]m g \sin \theta-\mu m g \cos \theta=m a[/tex]

[tex]a=g \sin \theta-\mu g \cos \theta[/tex]

Where[tex]F_{g}[/tex]=Force imparted due to weight

[tex]F_{f}[/tex]=Frictional Force

m=Mass of the bar

g=Acceleration due to gravity

a=Acceleration of the bar

[tex]\sin \theta[/tex] and [tex]\cos \theta[/tex] are the angles involved in the system

If the bar starts from the rest

Equations of motion involved in calculating the displacement of the bar is given as

[tex]s=\frac{1}{2} a t^{2}[/tex], From this

 [tex]a t^{2}=2 s[/tex]

[tex]t^{2}=\frac{2 s}{a}[/tex]

[tex]t=\sqrt{\frac{2 s}{a}}[/tex]

Where s= displacement or length moved by the bar

a=Acceleration of the bar

t=Time taken to reach bottom

Substitute all the known values in the above equation we get

[tex]t=\sqrt{\frac{2 \times 9.2}{a}}[/tex] and we know that

[tex]a=g \sin \theta-\mu g \cos \theta[/tex]

[tex]=9.8 \times \sin 8.0-0.056 \times 9.8 \times \cos 8.0[/tex]

[tex]=1.364-0.543[/tex]

[tex]a=0.821[/tex]

[tex]t=\sqrt{\frac{2 \times 9.2}{0.821}}[/tex]

[tex]t=\sqrt{\frac{19.6}{0.821}}[/tex]

[tex]t=\sqrt{23.87332}[/tex]

t=4.886s

Result:

Thus the time taken by the bar to reach the bottom is t=4.886s