The point (2,3/2) is the midpoint of a line segment whose endpoints are (n-2,-6) and (-1,9). Use coordinate geometry to find the numerical value of n

Respuesta :

Answer:

[tex]n=7[/tex]

Step-by-step explanation:

we know that

The formula to calculate the midpoint between two points is equal to

[tex]M=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

In this problem we have

[tex]M=(2,\frac{3}{2})[/tex]

[tex](x_1,y_1)=(n-2,-6)[/tex]

[tex](x_2,y_2)=(-1,9)[/tex]

substitute in the formula

[tex](2,\frac{3}{2})=(\frac{n-2-1}{2},\frac{-6+9}{2})[/tex]

[tex](2,\frac{3}{2})=(\frac{n-3}{2},\frac{3}{2})[/tex]

Equate the x-coordinates both sides

[tex]2=\frac{n-3}{2}[/tex]

Solve for n

Multiply by 2 both sides

[tex]4=n-3[/tex]

Adds 3 both sides

[tex]4+3=n[/tex]

[tex]n=7[/tex]