Problem

Find the slope and y-intercept of the line that is \green{\text{perpendicular}}perpendicularstart color #28ae7b, start text, p, e, r, p, e, n, d, i, c, u, l, a, r, end text, end color #28ae7b to \blue{y = -\dfrac{2}{3} x + 5}y=−32​x+5start color #6495ed, y, equals, minus, start fraction, 2, divided by, 3, end fraction, x, plus, 5, end color #6495edand passes through the point \red{(-6, -4)}(−6,−4)​

Respuesta :

Answer:

The slope is 3/2 and y-intercept is 5.

Step-by-step explanation:

_______________________________________

The question states:

Find the slope and y-intercept of the line that is perpendicular to

[tex]y=-\frac{2}{3}x+5[/tex]

and passes through the point (-6, -4)

_______________________________________

From functions, we know that if two lines, called line 1 and line 2, are perpendicular, then it is true that:

[tex]m_{1}\times m_{2}=-1 \\ \\ \\ Where: \\ \\ m_{1}: Slope \ of \ line \ 1 \\ \\ m_{2}: Slope \ of \ line \ 2[/tex]

If the given line is called line 1, then:

[tex]m_{1}=-\frac{2}{3}[/tex]

Then:

[tex]m_{2}=-\frac{1}{m_{1}} \\ \\ m_{2}=-\frac{1}{-\frac{2}{3}} \\ \\ \boxed{m_{2}=\frac{3}{2}}[/tex]

On the other hand, the y-intercept can be found as:

[tex]y=m_{2}x+b \\ \\ y=\frac{3}{2}x+b \\ \\ For \ (x,y)=(-6,-4) \\ \\ -4=\frac{3}{2}(-6)+b \\ \\ Solving \ for \ b: \\ \\ -4=-9+b \\ \\ b=9-4 \\ \\ \boxed{b=5}[/tex]

Find the slope is 3/2 and y-intercept is 5.

Answer:

pls type properly -_-

Step-by-step explanation: