mo4al
contestada

Which equation represents the line that passes through (–6, 7) and (–3, 6)?

y = –y equals negative StartFraction one-third EndFraction x plus 9.x + 9
y = –y equals negative StartFraction one-third EndFraction x plus 5.x + 5
y = –3x – 11y
y = –3x + 25

Respuesta :

Answer:

[tex]y = \frac{-x}{3} + 5[/tex]

Step-by-step explanation:

Given A (x₁, y₁) = ( -6, 7) and B (x₂, y₂) = (-3, 6)

Slope of line passing through points ( -6, 7) and  (-3, 6) is:

m = [tex]\frac{y_{2} -y_{1}}{x_{2} -x_{1}} =\frac{6 - 7}{-3 + 6} =\frac{-1}{3}[/tex]

Now, the equation of line in point-slope form:

(y - y₁) = m (x - x₁)

Substituting the value of m and  (x₁, y₁) = ( -6, 7) in above equation,

[tex](y - 7) = \frac{-1}{3}(x - (-6))[/tex]

[tex](y - 7) = \frac{-1}{3}(x + 6)[/tex]

[tex]3y - 21 = -x - 6[/tex]

[tex]3y = -x - 6 + 21[/tex]

[tex]3y = -x + 15[/tex]

[tex]y = \frac{-x + 15}{3}[/tex]

[tex]y = \frac{-x}{3} + 5[/tex]

Option B is the correct answer.

Answer:

b

Step-by-step explanation: