Respuesta :

Answer:

π/14, 3π/14, 5π/14

Step-by-step explanation:

sin(4θ) cos(2θ) = sin(5θ) cos(3θ)

Multiply both sides by 2:

2 sin(4θ) cos(2θ) = 2 sin(5θ) cos(3θ)

Use product to sum formula:

sin(4θ+2θ) + sin(4θ−2θ) = sin(5θ+3θ) + sin(5θ−3θ)

sin(6θ) + sin(2θ) = sin(8θ) + sin(2θ)

Simplify:

sin(6θ) = sin(8θ)

sin(8θ) − sin(6θ) = 0

Use sum to product formula:

2 sin(½(8θ−6θ)) cos(½(8θ+6θ)) = 0

2 sin(θ) cos(7θ) = 0

Solve:

sin(θ) = 0 or cos(7θ) = 0

θ = kπ

or

7θ = π/2 + kπ

θ = π/14 + k/7 π

θ = (2k+1)/14 π

0 < θ < π/2, so:

θ = π/14, 3π/14, 5π/14