Respuesta :

Answer:

y=[tex]\frac{x}{2} - 2[/tex]

Step-by-step explanation:

y = [tex]\frac{x+12}{2}[/tex]

if it goes through 4,0 and has a gradient of x/2 the y-int is at -2.

therefore, y=[tex]\frac{x}{2} - 2[/tex]

gmany

Answer:

[tex]\large\boxed{y=\dfrac{1}{2}x-2\to -x+2y=-4}[/tex]

Step-by-step explanation:

The slope-intercept form of an equation of a line:

[tex]y=mx+b[/tex]

m - slope

b - y-intercept

Let

[tex]k:y=m_1x+b_1,\ l:y=m_2x+b_2[/tex]

[tex]l\ \perp\ k\iff m_1m_2=-1\to m_2=-\dfrac{1}{m_1}\\\\l\ \parallel\ k\iff m_1=m_2[/tex]

Parallel lines have the same slope.

Convert given equation of a line to the slope-intercept form:

[tex]-x+2y=12[/tex]         add x to both sides

[tex]2y=x+12[/tex]         divide both sides by 2

[tex]y=\dfrac{1}{2}x+6[/tex]

The slope

[tex]m=\dfrac{1}{2}[/tex]

We have

[tex]y=\dfrac{1}{2}x+b[/tex]

Put the coordinates of the given point P(4, 0) to the equation:

[tex]0=\dfrac{1}{2}(4)+b[/tex]

[tex]0=2+b[/tex]              subtract 2 from both sides

[tex]-2=b\to b=-2[/tex]

Finally we have:

[tex]y=\dfrac{1}{2}x-2[/tex]

Convert to the standard form (Ax + By = C):

[tex]y=\dfrac{1}{2}x-2[/tex]          multiply both sides by 2

[tex]2y=x-4[/tex]         subtract x from both sides

[tex]-x+2y=-4[/tex]