Answer the Blanks:

m∠A = 50m

∠ACB = 85

Answer Blank #1: Find ∠ADC

Answer Blank #2: Find ∠ CDB

Answer Blank #3: Find ∠ ACD

Answer Blank #4: Find ∠ BCD

Answer Blank #5: Find ∠ B


Use only numbers. Do not label your answers.

Answer the BlanksmA 50mACB 85Answer Blank 1 Find ADCAnswer Blank 2 Find CDBAnswer Blank 3 Find ACDAnswer Blank 4 Find BCDAnswer Blank 5 Find BUse only numbers D class=

Respuesta :

frika

Answer:

1. 90°

2. 90°

3. 40°

4. 45°

5. 45°

Step-by-step explanation:

Given: ΔABC,

CD⊥AB,

m∠A=50°,

m∠ACB=85°

Solution:

1. ∠ADC is a right ange, because CD⊥AB, so

[tex]m\angle ADC=90^{\circ}[/tex]

2. ∠CDB is a right ange, because CD⊥AB, so

[tex]m\angle CDB=90^{\circ}[/tex]

3. Consider triangle ACD. The sum of the measures of all interior angles is always 180°, so

[tex]m\angle A+m\angle ADC+m\angle ACD=180^{\circ}\\ \\50^{\circ}+90^{\circ}+m\angle ACD=180^{\circ}\\ \\m\angle ACD=180^{\circ}-50^{\circ}-90^{\circ}=40^{\circ}[/tex]

4. By Angle Addition Postulate,

[tex]m\angle ACD+m\angle BCD=m\angle ACB\\ \\40^{\circ}+m\angle BCD=85^{\circ}\\ \\m\angle BCD=85^{\circ}-40^{\circ}=45^{\circ}[/tex]

5. Consider triangle ABC. The sum of the measures of all interior angles is always 180°, so

[tex]m\angle A+m\angle ACB+m\angle B=180^{\circ}\\ \\50^{\circ}+85^{\circ}+m\angle B=180^{\circ}\\ \\m\angle B=180^{\circ}-50^{\circ}-85^{\circ}=45^{\circ}[/tex]