Answer:
a) 3.00 m/s, approximately and b) 2.135 m/s
Explanation:
a) x1 = 73.2 m and v1 = 1.22 m/s, then
[tex]t_1 = \frac{x_1}{v_1} = \frac{73.2m}{1.22m/s}=60 s[/tex];
x2 = 7302 m and v2 = 3.05 m/s, then
[tex]t_2 = \frac{x_2}{v_2} = \frac{7302m}{3.05m/s}\approx 2394.1 s[/tex].
So the average speed is
[tex]v_a=\frac{x_1+x_2}{t_1+t_2}=\frac{73.2m+7302m}{60s+2394.1}\approx 3m/s[/tex].
b) t1 = 60 s and v1 = 1.22 m/s, then
[tex]x_1 = t_1\times v_1 = 60s\times 1.22 m/s = 73.2 m[/tex];
t2 = 60 s and v2 = 3.05 m/s, then
[tex]x_2 = t_2\times v_2 = 60s\times 3.05 m/s = 183 m[/tex];
So the average speed is
[tex]v_a=\frac{x_1+x_2}{t_1+t_2}=\frac{73.2m+183m}{60s+60s}=2.135m/s[/tex].
c) Plot cumulative distance Vs. cumulative time, the slope of the line going through the origen and the final coordinate, is the velocity