Answer:
Langdon is not correct. It means distributive property is not applicable for sines of angles.
Step-by-step explanation:
According to Langdon
[tex]\sin 30 +\sin 30=\sin 60[/tex]
We need to check whether Langdon is correct or not.
Taking LHS,
[tex]LHS=\sin 30 +\sin 30[/tex]
[tex]LHS=2\sin 30[/tex]
[tex]LHS=2(\frac{1}{2})[/tex] [tex][\because \sin 30=\frac{1}{2}][/tex]
[tex]LHS=1[/tex]
Taking RHS,
[tex]RHS=\sin 60[/tex]
[tex]RHS=\frac{\sqrt{3}}{2}[/tex] [tex][\because \sin 60=\frac{\sqrt{3}}{2}][/tex]
Since LHS ≠ RHS, therefore Langdon is not correct.
It means distributive property is not applicable for sines of angles.
[tex]\sin A+\sin B\neq \sin (A+B)[/tex]