Langdon thinks that the sum sin30+sin30 is equal to sin60. Do you agree with Langdon? Explain what this means about the sum of the sines of angles.

Respuesta :

Answer:

Langdon is not correct. It means distributive property is not applicable for sines of angles.

Step-by-step explanation:

According to Langdon

[tex]\sin 30 +\sin 30=\sin 60[/tex]

We need to check whether Langdon is correct or not.

Taking LHS,

[tex]LHS=\sin 30 +\sin 30[/tex]

[tex]LHS=2\sin 30[/tex]

[tex]LHS=2(\frac{1}{2})[/tex]            [tex][\because \sin 30=\frac{1}{2}][/tex]

[tex]LHS=1[/tex]

Taking RHS,

[tex]RHS=\sin 60[/tex]

[tex]RHS=\frac{\sqrt{3}}{2}[/tex]           [tex][\because \sin 60=\frac{\sqrt{3}}{2}][/tex]

Since LHS ≠ RHS, therefore Langdon is not correct.

It means distributive property is not applicable for sines of angles.

[tex]\sin A+\sin B\neq \sin (A+B)[/tex]