A force of 8 N makes an angle of π/4 radian with the y-axis, pointing to the right. The force acts against the movement of an object along the straight line connecting (1, 3) to (4, 5).

a. Find a formula for the force vector F

b. Find the angle θ between the displacement direction D = (4 − 1)i + (5 − 3)j and the force direction F. (Round your answer to one decimal place.)

c. The work done is F · D or, equivalently, ||F||||D||cos(θ). Compute the work from both formulas and compare

Respuesta :

Answer:

a) F= 4[tex]\sqrt{2}[/tex] i + 4[tex]\sqrt{2}[/tex] j

b) Θ=11.3

c) The work done is 20[tex]\sqrt{2}[/tex]

Step-by-step explanation:

a) ||F||=8, α=π/4

Fx=||F||·sin(π/4)=8·[tex]\frac{\sqrt{2}}{2}[/tex]

Fy=||F||·cos(π/4)=8·[tex]\frac{\sqrt{2}}{2}[/tex]

F=Fx i + Fy j = 4[tex]\sqrt{2}[/tex] i + 4[tex]\sqrt{2}[/tex] j

b) We can find the value of Θ using the equation:

cos(Θ)=[tex]\frac{F.D}{||F||||D||}[/tex]

where:

D= 3 i + 2 j

F=4[tex]\sqrt{2}[/tex] i + 4[tex]\sqrt{2}[/tex] j

The dot product is defined as the sum of the products of the components of each vector as:

F · D= [tex](4\sqrt{2})*3+(4\sqrt{2})*2=20\sqrt{2}[/tex]

||F||= 8

||D||= [tex]\sqrt{3^2+2^2} =\sqrt{13}[/tex]

Hence:

Θ=arccos([tex]\frac{20\sqrt{2} }{8\sqrt{13} }[/tex])

Θ=arccos(0.981)

Θ= 11.3°

c) Work is equal to:

F · D= [tex](4\sqrt{2})*3+(4\sqrt{2})*2=20\sqrt{2}[/tex]=28.3

Other way of obtainig the work is:

||F||||D||cos(Θ)

where:

||F||= 8

||D||= [tex]\sqrt{3^2+2^2} =\sqrt{13}[/tex]

Θ=11.3°

So,  ||F||||D||cos(Θ)=8×[tex]\sqrt{13}[/tex]×cos(11.3°)=28.3