Answer:
They encircle the planet [tex]3.76\times 10^{11}[/tex] times.
Step-by-step explanation:
Consider the provided information.
We have 2.5 mole of dust particles and the Avogadro's number is [tex]6.022\times 10^{23}[/tex]
Thus, the number of dust particles is:
[tex]2.5\times 6.022\times 10^{23}=15.055\times 10^{23}[/tex]
Diameter of a dust particles is 10μm and the circumference of earth is 40,076 km.
Convert the measurement in meters.
Diameter: [tex]10\mu m\times \frac{10^{-6}m}{\mu m} =10^{-5}m[/tex]
If we line up the particles the distance they could cover is:
[tex]15.055\times 10^{23}\times 10^{-5}=15.055\times 10^{18}=1.5055\times 10^{19}[/tex]
Circumference in meters:
[tex]40,076km\times \frac{1000m}{1km}=40,076,000 m[/tex]
Therefore,
[tex]\frac{1.5055\times 10^{19}}{40,076,000} = 3.76\times 10^{11}[/tex]
Hence, they encircle the planet [tex]3.76\times 10^{11}[/tex] times.