Respuesta :

Answer:

[tex]\frac{5\sqrt{x}}{x^4}[/tex]

Step-by-step explanation:

The given expression is

[tex]\frac{5}{\sqrt{x^7}}[/tex]

We need to find the simplified form of the given expression.

Using product property of exponent we get,

[tex]\frac{5}{\sqrt{x^6\cdot x}}[/tex]               [tex][\because a^ma^n=a^{m+n}][/tex]

[tex]\frac{5}{\sqrt{x^6}\cdot \sqrt{x}}[/tex]          (Distributive property)

[tex]\frac{5}{\sqrt{(x^3)^2}\cdot \sqrt{x}}[/tex]            [tex][\because (a^m)^n=a^{mn}][/tex]

[tex]\frac{5}{x^3\cdot \sqrt{x}}[/tex]

Multiply numerator and denominator by [tex]\sqrt{x}[/tex] to rationalize denominators.

[tex]\frac{5}{x^3\cdot \sqrt{x}}\times \frac{\sqrt{x}}{\sqrt{x}}[/tex]

[tex]\frac{5\sqrt{x}}{x^3\cdot (\sqrt{x})^2}[/tex]

[tex]\frac{5\sqrt{x}}{x^3\cdot x}[/tex]

[tex]\frac{5\sqrt{x}}{x^4}[/tex]

Therefore, the simplified form of given expression is [tex]\frac{5\sqrt{x}}{x^4}[/tex].