An infinite nonconducting sheet has a surface charge density σ = 0.10 µC/m2 on one side. How far apart are equipotential surfaces whose potentials differ by 86 V?

Respuesta :

Answer:

d = 0.152 meters                                                        

Explanation:

It is given that,

Surface charge density of the sheet, [tex]\sigma=0.10\ \mu C/m^2=0.1\times 10^{-6}\ C/m^2[/tex]

Potential, V = 86 V

We know that the electric field due to the non conducting sheet is given by :

[tex]E=\dfrac{\sigma}{2\epsilon_o}[/tex]

Also, the relation between the electric field and electric potential is given by :

[tex]E=\dfrac{V}{d}[/tex]

d is the distance between equipotential surfaces

[tex]\dfrac{V}{d}=\dfrac{\sigma}{2\epsilon_o}[/tex]  

[tex]d=\dfrac{2V\epsilon_o}{\sigma}[/tex]

[tex]d=\dfrac{2\times 86\times 8.85\times 10^{-11}}{0.1\times 10^{-6}}[/tex]

d = 0.152 meters

So, the equipotential surfaces are separated by 0.152 meters. Hence, this is the required solution.