Answer: 27434
Step-by-step explanation:
Given : Total number of vials = 56
Number of vials that do not have hairline cracks = 13
Then, Number of vials that have hairline cracks =56-13=43
Since , order of selection is not mattering here , so we combinations to find the number of ways.
The number of combinations of m thing r things at a time is given by :-
[tex]^nC_r=\dfrac{n!}{r!(n-r)!}[/tex]
Now, the number of ways to select at least one out of 3 vials have a hairline crack will be :-
[tex]^{13}C_2\cdot ^{43}C_{1}+^{13}C_{1}\cdot ^{43}C_{2}+^{13}C_0\cdot ^{43}C_{3}\\\\=\dfrac{13!}{2!(13-2)!}\cdot\dfrac{43!}{1!(42)!}+\dfrac{13!}{1!(12)!}\cdot\dfrac{43!}{2!(41)!}+\dfrac{13!}{0!(13)!}\cdot\dfrac{43!}{3!(40)!}\\\\=\dfrac{13\times12\times11!}{2\times11!}\cdot (43)+(13)\cdot\dfrac{43\times42\times41!}{2\times41!}+(1)\dfrac{43\times42\times41\times40!}{6\times40!}\\\\=3354+11739+12341=27434[/tex]
Hence, the required number of ways =27434