Respuesta :
Answer:
(a) Radius of orbit will be [tex]=7.32\times10^6m[/tex]
(b) Earth gravitational force will be [tex]=4.18\times 10^4N[/tex]
(C) Height will be [tex]0.92\times 10^6m[/tex]
Explanation:
We have given
Mass of the earth, [tex]M=6\times 10^{24}kg[/tex]
Mass of the satellite, m = 5600 kg
Radius of earth, [tex]R=6.4\times 10^6m[/tex]
Time period T = 6200 sec
We know that [tex]\omega =\frac{2\pi }{T}=\frac{2\times 3.14}{6200}=0.00101rad/sec[/tex]
Now
(a) We know that [tex]\omega ^2=\frac{GM}{R^3}[/tex]
[tex]R^3=\frac{GM}{\omega ^2}[/tex]
[tex]R^3=\frac{6.67\times 10^{-11}\times 6\times 10^{24}}{0.00101 ^2}[/tex]
[tex]R^3=3.92\times 10^{20}[/tex]
Radius of the orbit [tex]R=7.32\times 10^6m[/tex]
(b)
Force [tex]F=\frac{GMm}{R^2}=\frac{6.67\times 10^{-11}\times 6\times 10^{24}\times 5600}{(7.32\times 10^6)^2}=4.18\times 10^4N[/tex]
(c)
Altitude [tex]h=radius\ of\ orbit-radius\ of\ earth=7.32\times 10^6-6.4\times 10^6=0.92\times 10^6m[/tex]
(a) The radius of its circular orbit is 7.308 x 10⁶ m.
(b) The magnitude of the Earth's gravitational force on the satellite is 41,753.3 N.
(c) The altitude of the satellite is 9.08 x 10⁵ m.
The given parameters;
- mass of the satellite, m = 5600 kg
- period of the satellite, T = 6200 s
- mass of earth, m = 5.97 x 10²⁴ kg
The angular speed of the satellite is calculated as follows;
[tex]\omega = \frac{2\pi }{T} \\\\\omega = \frac{2\pi }{6200} = 0.00101 \ rad/s[/tex]
The radius of the circular orbit is calculated as follows;
[tex]m \omega ^2 R = \frac{GMm}{R^2} \\\\\omega ^2 = \frac{GM}{R^3}\\\\R^3 = \frac{GM}{\omega ^2}\\\\R = \sqrt[3]{\frac{GM}{\omega ^2}} \\\\R = \sqrt[3]{\frac{(6.67\times 10^{-11}) \times (5.97 \times 10^{24}))}{(0.00101) ^2}}\\\\R = 7.308 \times 10^6 \ m[/tex]
The magnitude of the Earth's gravitational force on the satellite is calculated as follows;
[tex]F = \frac{GMm}{R^2} \\\\F = \frac{(6.67\times 10^{-11}) \times (5.97 \times 10^{24}) \times (5600)}{(7.308\times 10^6)^2} \\\\F = 41,753.3 \ N[/tex]
The altitude of the satellite is calculated as follows;
[tex]h = (7.308 \times 10^6) - (radius \ of \ earth)\\\\h = 7.308 \times 10^6 - 6.4\times 10^6\\\\h = 9.08 \times 10^5 \ m[/tex]
Learn more here:https://brainly.com/question/15287636